Driven Brownian coagulation of polymers.

نویسندگان

  • P L Krapivsky
  • Colm Connaughton
چکیده

We present an analysis of the mean-field kinetics of Brownian coagulation of droplets and polymers driven by input of monomers which aims to characterize the long time behavior of the cluster size distribution as a function of the inverse fractal dimension, a, of the aggregates. We find that two types of long time behavior are possible. For 0≤a<1/2 the size distribution reaches a stationary state with a power law distribution of cluster sizes having exponent 3/2. The amplitude of this stationary state is determined exactly as a function of a. For 1/2<a≤1, the cluster size distribution never reaches a stationary state. Instead a bimodal distribution is formed in which a narrow population of small clusters near the monomer scale is separated by a gap (where the cluster size distribution is effectively zero) from a population of large clusters which continue to grow for all time by absorbing small clusters. The marginal case, a=1/2, is difficult to analyze definitively, but we argue that the cluster size distribution becomes stationary and there is a logarithmic correction to the algebraic tail.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Replica Symmetry Breaking in Trajectories of a Driven Brownian Particle.

We study a Brownian particle passively driven by a field obeying the noisy Burgers' equation. We demonstrate that the system exhibits replica symmetry breaking in the path ensemble with the initial position of the particle being fixed. The key step of the proof is that the path ensemble with a modified boundary condition can be exactly mapped onto the canonical ensemble of directed polymers.

متن کامل

A Brownian Dynamics Study of Crossover Scaling in Semidilute Polymer Solutions

Understanding the dynamics of polymer solutions in the semidilute regime is important not only from the point of view of advancing fundamental knowledge in polymer science but also from the point of view of technological applications. The behavior of semidilute polymer solutions varies significantly with concentration and solvent quality, which are reflected in the concentration driven crossove...

متن کامل

Dynamic density functional study of a driven colloidal particle in polymer solutions.

The dynamic density functional (DDF) theory and standard Brownian dynamics simulations (BDS) are used to study the drifting effects of a colloidal particle in a polymer solution, both for ideal and interacting polymers. The structure of the stationary density distributions and the total induced current are analyzed for different drifting rates. We find good agreement with the BDS, which gives s...

متن کامل

Energy dissipation of a Brownian particle in a viscoelastic fluid.

We evaluate the energy dissipation rate of an optically driven Brownian particle in a polymer solution utilizing the generalized version of Harada and Sasa's equality [Phys. Rev. Lett. 95, 130602 (2005)] by Deutsch and Narayan [Phys. Rev. E 74, 026112 (2006)]. The irreversible work of a small system is estimated from readily obtainable quantities. By adopting the time-dependent memory function ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 136 20  شماره 

صفحات  -

تاریخ انتشار 2012